## Type sheet

Bi-directional in-line deflagration flame arrester, short-time burning proof

KITO<sup>®</sup> INE-I-.../...-1.5 KITO<sup>®</sup> INE-I-.../...-1.5-T (-TT)



#### **Application**

For installation into pipes to the protection of vessels and components against deflagration of flammable liquids and gases. Approved for all substances of explosion group IIA1 (old: I) with a maximum experimental safe gap (MESG) ≥ 1.14 mm. Bi-directionally working in pipes, whereby an operating pressure of 1.5 bar abs. and an operating temperature of 60 °C must not be exceeded. The distance between a potential ignition source and the flame arrester must not exceed 50 times the inner pipe diameter. An installation into horizontal and vertical pipes is permissible. To detect a thermal load on the KITO® flame arrester element in operation, a temperature sensor can be implemented as an option into the flame arrester body. Proof against "stabilized burning" and withstand this up to a max. burn time BT = 1.0 min.

### Dimension (mm)





| NG  | DN        |      | D   | L1  | н    | L2  | ka |
|-----|-----------|------|-----|-----|------|-----|----|
|     | DIN       | ASME | U   | L1  | п    | LZ  | kg |
| 150 | 65 PN 16  | -    | 210 | 239 | 39   | 100 | 19 |
|     | 80 PN 16  | 3"   |     |     |      |     |    |
| 200 | 100 PN 16 | 4"   | 268 | 249 | 39   | 105 | 27 |
| 250 | 125 PN 16 | -    | 322 | 279 | 39   | 120 | 36 |
| 300 | 150 PN 16 | 6"   | 370 | 305 | 45   | 130 | 50 |
|     | 200 PN 10 | 8"   |     |     |      |     |    |
| 400 | 250 PN 10 | 10"  | 480 | 345 | - 45 | 150 |    |
|     | 300 PN 10 | 12"  |     | 323 |      | 139 |    |

Weight refers to the variant I

#### Example for order

KITO® INE-I-150/80-1.5-T

(Design NG 150 with flange connection DN 80 PN 16 and a temperature sensor)

Type examination certificate to EN ISO 16852 and CE-marking in accordance to ATEX-Directive 2014/34/EU

page 1 of 2



CMC TECHNOLOGIES

Unit 19, 77 Bourke Road, Alexandria, NSW, 2015

AUSTRALIA

05-2018

Design subject to change

Date:



# Type sheet

Bi-directional in-line deflagration flame arrester, short-time burning proof KITO<sup>®</sup> INE-I-.../...-1.5 KITO<sup>®</sup> INE-I-.../...-1.5-T (-TT)



#### Design

|                              | variant I                                            | variant II                      | variant III                     |  |  |
|------------------------------|------------------------------------------------------|---------------------------------|---------------------------------|--|--|
| housing                      | cast steel 1.0619                                    | cast steel 1.0619               | stainless cast steel 1.4408     |  |  |
| gasket                       | HD 3822                                              | PTFE                            | PTFE                            |  |  |
| KITO®-flame arrester element | completely interchangeable                           |                                 |                                 |  |  |
| KITO®-casing                 | steel                                                | stainless steel mat. no. 1.4571 | stainless steel mat. no. 1.4571 |  |  |
| KITO <sup>®</sup> -grid      | stainless steel mat. no. 1.4310                      | stainless steel mat. no. 1.4571 | stainless steel mat. no. 1.4571 |  |  |
| bolts / nuts                 | galvanized steel                                     | galvanized steel                | A4                              |  |  |
| temperature sensor           | PT 100 (option), connection 3/8", 1.4571             |                                 |                                 |  |  |
| flange connection            | EN 1092-1 type B1 optionally ASME B16.5 Class 150 RF |                                 |                                 |  |  |

#### Performance curves

Flow capacity V based on air of a density  $p = 1.29 \text{ kg/m}^3$  at T = 273 K and atmospheric pressure p = 1.013 mbar. For other gases the flow can be approximately calculated by

$$\dot{\mathbf{V}} = \dot{\mathbf{V}}_{b} \cdot \sqrt{\frac{\rho_{b}}{1.29}} \ or \qquad \dot{\mathbf{V}}_{b} = \dot{\mathbf{V}} \cdot \sqrt{\frac{1.29}{\rho_{b}}}$$

$$\dot{V}_b = \dot{V} \cdot \sqrt{\frac{1.29}{\rho_b}}$$



page 2 of 2



Design subject to change