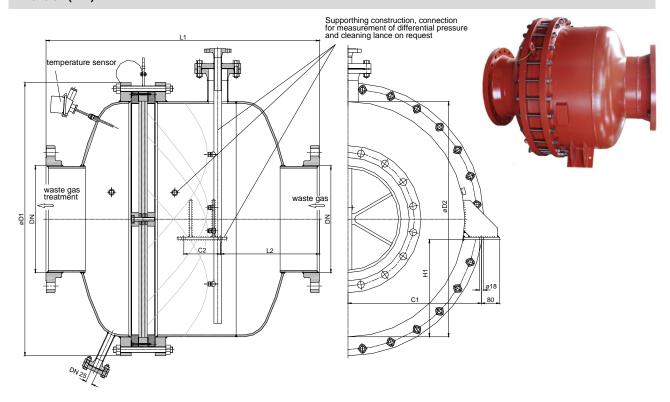

Type sheet

Uni-directional in-line deflagration flame arrester, short-time burning proof


KITO[®] RV/N-IIA-.../...-1.2 KITO[®] RV/N-IIA-.../...-1.2-T

Application

Intermediate armature, mainly installed as in-line deflagration flame arrester in pipes to thermal incineration plants for vapor/air and air/gas mixtures. Unilaterally working in pipes, whereby an operating pressure of 1.2 bar abs. and an operating temperature of 60 °C must not be exceeded. Approved for all substances of the explosion group IIA with a MESG > 0.9 mm. The maximum length of the pipe from the KITO $^{\otimes}$ flame arrester to the ignition source is limited (L/D tube length/tube diameter). It is only allowed to install the device in pipes with nominal widths \leq than the nominal width of the armature (DN). The temperature sensors (2 pieces, arranged on one side) serves to trigger an emergency function, e.g. shutting off or inerting the gas flow if a stabilized burning occurs at the KITO $^{\otimes}$ flame arrester.

Dimension (mm)

NG	DN		D1	D2	L1	L2	C1	C2	H1	max.	kg	kg
	DIN	ASME	וט	DZ	LI	LZ	Ci	C2		L/D*	(DIN)	(ASME)
800	400	16"	1015	813	900	295	487	130	316	10	540	
800	500	20"	1013	013	900	290	407	130	310	10	560	
	400	16"										
1000	450	18"	1180	1016	1190	405	580	210	420	50	824	862
1000	500	20"	1100	1016	1190	403	360	210	420	50	821	879
	600	24"									839	939

Weight refers to the standard design

Example for order

KITO® RV/N-IIA-800/400-1.2-T

(Design NG 800 with flange connection DN 400 PN 10 and two temperature sensors)

Type examination certificate to EN ISO 16852 and C€-marking in accordance to ATEX-Directive 2014/34/EU

page 1 of 2

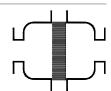
CMC TECHNOLOGIES

PTY LIMITED ACN: 085 991 224, ABN: 47 085 991 224

H 26 N

Date: 05-2018

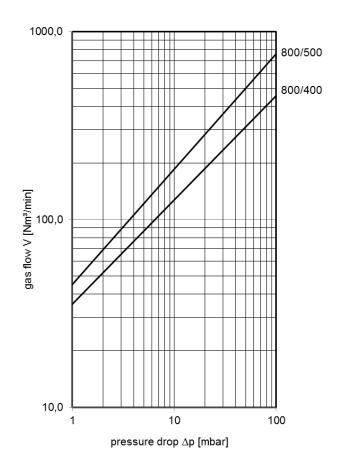
Created: Abt. Doku KITO

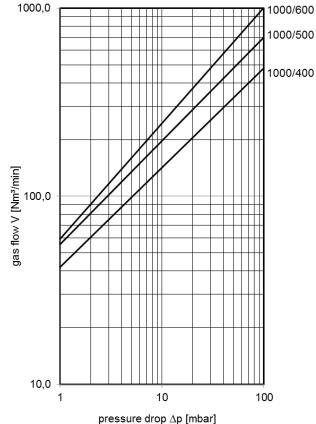

Design subject to change

^{*} Ratio of pipe length to nominal pipe diameter

Type sheet

Uni-directional in-line deflagration flame arrester, short-time burning proof KITO® RV/N-IIA-.../...-1.2 KITO® RV/N-IIA-.../...-1.2-T


Design


	standard	optionally			
housing	steel	stainless steel mat. no. 1.4301 / 1.4571			
gasket	HD 3822	PTFE			
KITO®-flame arrester element	completely interchangeable				
KITO®-casing	steel	stainless steel mat. no. 1.4301 / 1.4571			
KITO [®] -grid	stainless steel mat. no. 1.4310	stainless steel mat. no. 1.4571			
temperature sensor		2x PT 100, connection 3/8", 1.4571			
condensate drain connecting piece	blank flanged				
flange connection	EN 1092-1 type A	ASME B16.5 Class 150 RF			

Performance curves

Flow capacity V based on air of a density $p = 1.29 \text{ kg/m}^3$ at T = 273 K and atmospheric pressure p = 1.013 mbar. For other gases the flow can be approximately calculated by

$$\overset{\cdot}{V}=\overset{\cdot}{V}_{b}\cdot\sqrt{\frac{\rho_{b}}{1.29}}\ or \qquad \overset{\cdot}{V}_{b}=\overset{\cdot}{V}\cdot\sqrt{\frac{1.29}{\rho_{b}}}$$

page 2 of 2

H 26 N

Date: 05-2018 Abt. Doku KITO Created:

Design subject to change